skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaplan, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Light, weakly coupled bosonic particles such as axions can mediate long range monopole-dipole interactions between matter and spins. We propose a new experimental method to detect such a force exerted by the spin of electrons on a freely falling atom using atom interferometry. The intrinsic advantages of atom interferometry, such as the freely falling nature of the atom and the well-defined response of the atom to external magnetic fields, should enable the proposed method to overcome systematic effects induced by vibrations, magnetic fields, and gravity. This approach is most suited to probe forces with a range 10 cm . With current technology, our proposed setup could potentially extend probes of such forces by an order of magnitude beyond present laboratory limits. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. We study the consequences of new long-range forces between neutrinos on cosmic scales. If these forces are a few orders of magnitude stronger than gravity, they can induce perturbation instability in the nonrelativistic cosmic neutrino background in the late time universe. As a result, the cosmic neutrino background may form nonlinear bound states instead of free-streaming. The implications of the formation of nonlinear neutrino bound states include enhancing matter perturbations and triggering star formation. Based on existing measurements of the matter power spectrum and reionization history, we place new constraints on long-range forces between neutrinos with ranges lying in 1 kpc m ϕ 1 10 Mpc . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Free, publicly-accessible full text available February 1, 2026
  4. Abstract Human intestinal organoids (HIOs) are vital for modeling intestinal development, disease, and therapeutic tissue regeneration. However, their susceptibility to stress, immunological attack, and environmental fluctuations limits their utility in research and therapeutic applications. This study evaluated the effectiveness of temporary silk protein‐based layer‐by‐layer (LbL) nanoencapsulation technique to enhance the viability and functions of HIOs against common biomedical stressors, without compromising their native functions. Cell viability and differentiation capacity are assessed, finding that nanoencapsulation significantly improved HIO survival under the various environmental perturbations studied without compromising cellular functionality. Post‐stress exposures, the encapsulated HIOs still successfully differentiated into essential intestinal cell types such as enterocytes, goblet cells, enteroendocrine cells, and Paneth cells. Moreover, the silk nanocoatings effectively protected against environmental stressors such as ultraviolet (UV) light exposure, protease degradation, antibody binding, and cytokine‐induced inflammation. This nanoencapsulation technique shows promise for advancing HIO applications in disease modeling, drug testing, and potential transplantation therapies. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. We propose to use atoms and molecules as quantum sensors of axion-mediated monopole-dipole forces. We show that electron spin precession experiments using atomic and molecular beams are well-suited for axion searches thanks to the presence of co-magnetometer states and single-shot temporal resolution. Experimental strategies to detect axion gradients from localised sources and the earth are presented, taking ACME III as a prototype example. Other possibilities including atomic beams, and laser-cooled atoms and molecules are discussed. 
    more » « less
  6. Encapsulation of single cells is a powerful technique used in various fields, such as regenerative medicine, drug delivery, tissue regeneration, cell-based therapies, and biotechnology. It offers a method to protect cells by providing cytocompatible coatings to strengthen cells against mechanical and environmental perturbations. Silk fibroin, derived from the silkworm Bombyx mori, is a promising protein biomaterial for cell encapsulation due to the cytocompatibility and capacity to maintain cell functionality. Here, THP-1 cells, a human leukemia monocytic cell line, were encapsulated with chemically modified silk polyelectrolytes through electrostatic layer-by-layer deposition. The effectiveness of the silk nanocoating was assessed using scanning electron microscopy (SEM) and confocal microscopy and on cell viability and proliferation by Alamar Blue assay and live/dead staining. An analysis of the mechanical properties of the encapsulated cells was conducted using atomic force microscopy (AFM) nanoindentation to measure elasticity maps and cellular stiffness. After the cells were encapsulated in silk, an increase in their stiffness was observed. Based on this observation, we developed a mechanical predictive model to estimate the variations in stiffness in relation to the thickness of the coating. By tuning the cellular assembly and biomechanics, these encapsulations promote systems that protect cells during biomaterial deposition or processing in general. 
    more » « less
  7. Abstract We report on the results of an image-based search for pulsar candidates toward the Galactic bulge. We used mosaic images from the MeerKAT radio telescope that were taken as part of a 173 deg2survey of the bulge and Galactic center of our Galaxy atLband (856–1712 MHz) in all four StokesI,Q,U, andV. The image rms noise levels of 12–17μJy ba−1represent a significant increase in sensitivity over past image-based pulsar searches. Our primary search criterion was circular polarization, but we used other criteria, including linear polarization, in-band spectral index, compactness, variability, and multiwavelength counterparts to select pulsar candidates. We first demonstrate the efficacy of this technique by searching for polarized emission from known pulsars and comparing our results with measurements from the literature. Our search resulted in a sample of 75 polarized sources. Bright stars or young stellar objects were associated with 28 of these sources, including a small sample of highly polarized dwarf stars with pulsar-like steep spectra. Comparing the properties of this sample with the known pulsars, we identified 30 compelling candidates for pulsation follow-up, including two sources with both strong circular and linear polarization. The remaining 17 sources are either pulsars or stars, but we cannot rule out an extragalactic origin or image artifacts among the brighter, flat-spectrum objects. 
    more » « less
  8. ABSTRACT In this paper, we present an optimized version of the detection pipeline for the ASKAP Variables and Slow Transients (VAST) survey, offering significant performance improvement. The key to this optimization is the replacement of the original w-projection algorithm integrated in the Common Astronomy Software Applications package with the w-stacking algorithm implemented in the WSClean software. Our experiments demonstrate that this optimization improves the overall processing efficiency of the pipeline by approximately a factor of 3. Moreover, the residual images generated by the optimized pipeline exhibit lower noise levels and fewer artefact sources, suggesting that our optimized pipeline not only enhances detection accuracy but also improves imaging fidelity. This optimized VAST detection pipeline is integrated into the Data Activated Liu Graph Engine (DALiuGE) execution framework, specifically designed for SKA-scale big data processing. Experimental results show that the performance and scalability advantages of the pipeline using DALiuGE over traditional MPI or BASH techniques increase with the data size. In summary, the optimized transient detection pipeline significantly reduces runtime, increases operational efficiency, and decreases implementation costs, offering a practical optimization solution for other ASKAP imaging pipelines as well. 
    more » « less
  9. ABSTRACT The population of radio-loud stars has to date been studied primarily through either targeted observations of a small number of highly active stars or wide-field, single-epoch surveys that cannot easily distinguish stellar emission from background extragalactic sources. As a result it has been difficult to constrain population statistics such as the surface density and fraction of the population producing radio emission in a particular variable or spectral class. In this paper, we present a sample of 36 radio stars detected in a circular polarization search of the multi-epoch Variables and Slow Transients (VAST) pilot survey with ASKAP at 887.5 MHz. Through repeat sampling of the VAST pilot survey footprint we find an upper limit to the duty cycle of M-dwarf radio bursts of $$8.5 \,\rm {per\,cent}$$, and that at least 10 ± 3 $$\rm {per\,cent}$$ of the population should produce radio bursts more luminous than $$10^{15} \,\rm {erg}\mathrm{s}^{-1} \,\mathrm{Hz}^{-1}$$. We infer a lower limit on the long-term surface density of such bursts in a shallow $$1.25 \,\mathrm{m}\rm {Jy}\rm\ {PSF}^{-1}$$ sensitivity survey of $${9}^{\, +{11}}_{-{7}}\times 10^{-3}$$  $$\,\deg ^{-2}$$ and an instantaneous radio star surface density of 1.7 ± 0.2 × 10−3  $$\,\deg ^{-2}$$ on 12 min time-scales. Based on these rates we anticipate ∼200 ± 50 new radio star detections per year over the full VAST survey and $${41\, 000}^{\, +{10\, 000}}_{-{9\, 000}}$$ in next-generation all-sky surveys with the Square Kilometre Array. 
    more » « less
  10. Abstract We present an intensive multiwavelength monitoring campaign of the quasar PG 1302−102 with Swift and the Las Cumbres Observatory network telescopes. Atz∼ 0.3, it tests the limits of the reverberation mapping (RM) technique in probing the accretion disk around a supermassive black hole (SMBH) and extends the parameter space to high masses and high accretion rates. This is also the first time the RM technique has been applied to test disk structures predicted in the SMBH binary model that has been suggested for this source. PG 1302−102 was observed at a ∼daily cadence for ∼9 months in 14 bands spanning from X-ray to UV and optical wavelengths, and it shows moderate to significant levels of variability correlated between wavelengths. We measure the interband time lags, which are consistent with aτ∝λ4/3relation as expected from standard disk reprocessing, albeit with large uncertainties. The disk size implied by the lag spectrum is consistent with the expected disk size for its black hole mass within uncertainties. While the source resembles other reverberation-mapped active galactic nuclei in many respects, and we do not find evidence supporting the prevalent hypothesis that it hosts an SMBH binary, we demonstrate the feasibility of studying SMBH binaries from this novel angle and suggest possibilities for the LSST Deep Drilling Fields. 
    more » « less